Customization: | Available |
---|---|
After-sales Service: | 1 Year |
Warranty: | 1 Year |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Outer sleeve- floater | R1- B1 | R2- B1 | R3- B1 | R1 -B2 | R1- B3 | R1 -B4 | ||
Basic data | ||||||||
Radius of the outer sleeve,, R0,cm | 1.8415 | 1.7588 | 2.5866 | 1.8415 | 1.8415 | 1.8415 | ||
Radius of the floater,R1, cm | 1.7245 | 1.7245 | 1.7245 | 1.2276 | 0.8622 | 0.8622 | ||
Height of the floater, L, cm | 3.800 | 3.800 | 3.800 | 3.800 | 3.800 | 1.900 | ||
Shearing clearance, cm | 0. 1170 | 0.0343 | 0.8621 | 0.6139 | 0.9793 | 0.9793 | ||
Radius ratio, R1/R0 | 0.936 | 0.09805 | 0.667 | 0.666 | 0.468 | 0.468 | ||
Maximum operating temperature, °C (°F) | 99(200) | 99(200) | 93(200) | 99(200) | 93(200) | 93(200) | ||
Minimum operating temperature, °C (°F) | 0(32) | 0(32) | 0(32) | 0(32) | 0(32) | 0(32) | ||
Instrumental Constant, K Standard F1 torsional spring ?= K fq / N | 300.0 |
94. 18 |
1355 |
2672 |
7620 |
15,200 |
||
Scope of the shearing stress | ||||||||
The constant of the shearing stress is the effective floater surface K2,cm(-3) The scope of the shearing stress,dynes / cm2t = K1K2q |
0.01323 |
0.01323 |
0.01323 |
0.0261 |
0.0529 |
0. 106 |
||
F0.2 q = 1° | 1.02 | 1.02 | 1.02 | 2.01 | 4.1 | 8.2 | ||
F0.2 q = 300° | 307 | 307 | 307 | 605 | 1225 | 2450 | ||
F1 q = 1° | 5. 11 | 5. 11 | 5. 11 | 10. 1 | 20.4 | 40.9 | ||
F1 q = 300° | 1533 | 1533 | 1533 | 3022 | 6125 | 12300 | ||
Shearing rate | ||||||||
The constant of the shearing rate K3, within the scope of the shearing rate 1 / rpm per second, 1 g = K3 per second | 1.7023 |
5.4225 |
0.377 |
0.377 |
0.268 |
0.268 |
||
N = 0.9 rpm | 1.5 | 4.9 | 0.4 | 0.4 | 0.24 | 0.24 |
||
N = 1.8 rpm | 3.1 | 9.8 | 0.7 | 0.7 | 0.48 | 0.48 | ||
N = 3 rpm | 5.1 | 16.3 | 1.1 | 1.1 | 0.80 | 0.80 | ||
N = 6 rpm | 10.2 | 32.5 | 2.3 | 2.3 | 1.61 | 1.61 | ||
N = 30 rpm | 51. 1 | 163 | 11.3 | 11.3 | 8.0 | 8.0 | ||
N = 60 rpm | 102 | 325 | 22.6 | 22.6 | 16. 1 | 16. 1 | ||
N = 90 rpm | 153 | 488 | 33.9 | 33.9 | 24. 1 | 24. 1 | ||
N = 100 rpm | 170 | 542 | 37.7 | 37.7 | 26.8 | 26.8 | ||
N = 180 rpm | 306 | 976 | 67.9 | 67.9 | 48.2 | 48.2 | ||
N = 200 rpm | 340 | 1084 | 75.4 | 75.4 | 53.6 | 53.6 | ||
N = 300 rpm | 511 | 1627 | 113 | 113 | 80.4 | 80.4 | ||
N = 600 rpm | 1021 | 3254 | 226 | 226 | 161 | 161 | ||
Viscosity range ( 1) | ||||||||
Maximum rotating speed 600, | 0.5(3) | 0.5(3) | 2.3 | 4.5 | 12.7 | 25 | ||
Note: ( 1) Calculate the standard torsional spring (f = 1). For other torsional springs, multiply the scope of viscosity with f factor. (2) The minimum viscometer has calculated the minimum shearing stress and the minimum shearing rate. (3) For practical purposes, the minimum viscometer is only limited to 0.5 cP due to Taylor vortex. |
Model | Rotating speed | Power | Size H×W×L | Net weight | Gross weight | ||
1100 | 3, 6, 100, 200,300, 600 | 220V 50Hz/60Hz | 410 | 150 | 280 | 9KG | 10KG |
1101 | 3, 6, 100, 200,300 , 600 | 100V-240V 50Hz/60Hz | 430 | 190 | 340 | 10KG | 15KG |
TP-1102 | 3, 6, 100, 200,300 , 600 | 100V-240V 50Hz/60Hz | 420 | 190 | 280 | 6.9KG | 13.4KG |